mirror of
https://github.com/freqtrade/freqtrade.git
synced 2025-12-16 04:41:15 +00:00
feat: Remove redundant filtering, add tests for pyarrow trade filtering, use date utils for date to ts conversion
This commit is contained in:
@@ -143,7 +143,7 @@ class FeatherDataHandler(IDataHandler):
|
||||
|
||||
except (ImportError, AttributeError, ValueError) as e:
|
||||
# Fallback: load entire file
|
||||
logger.debug(f"Unable to use Arrow filtering, loading entire trades file: {e}")
|
||||
logger.warning(f"Unable to use Arrow filtering, loading entire trades file: {e}")
|
||||
tradesdata = read_feather(filename)
|
||||
|
||||
return tradesdata
|
||||
|
||||
@@ -41,7 +41,7 @@ from freqtrade.strategy.informative_decorator import (
|
||||
)
|
||||
from freqtrade.strategy.strategy_validation import StrategyResultValidator
|
||||
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
|
||||
from freqtrade.util import dt_now
|
||||
from freqtrade.util import dt_now, dt_ts
|
||||
from freqtrade.wallets import Wallets
|
||||
|
||||
|
||||
@@ -1770,29 +1770,14 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
pair = metadata["pair"]
|
||||
# Build timerange from dataframe date column
|
||||
if not dataframe.empty:
|
||||
start_ts = int(dataframe["date"].iloc[0].timestamp() * 1000)
|
||||
end_ts = int(dataframe["date"].iloc[-1].timestamp() * 1000)
|
||||
start_ts = dt_ts(dataframe["date"].iloc[0])
|
||||
end_ts = dt_ts(dataframe["date"].iloc[-1])
|
||||
timerange = TimeRange("date", "date", startts=start_ts, stopts=end_ts)
|
||||
else:
|
||||
timerange = None
|
||||
|
||||
trades = self.dp.trades(pair=pair, copy=False, timerange=timerange)
|
||||
|
||||
# Apply additional filtering with buffer for faster backtesting
|
||||
if not trades.empty and not dataframe.empty and "timestamp" in trades.columns:
|
||||
# Add timeframe buffer to ensure complete candle coverage
|
||||
timeframe_buffer = timeframe_to_seconds(self.config["timeframe"]) * 1000
|
||||
|
||||
# Create time bounds with buffer
|
||||
time_start = start_ts - timeframe_buffer
|
||||
time_end = end_ts + timeframe_buffer
|
||||
|
||||
# Filter trades within buffered timerange
|
||||
trades_mask = (trades["timestamp"] >= time_start) & (
|
||||
trades["timestamp"] <= time_end
|
||||
)
|
||||
trades = trades.loc[trades_mask].reset_index(drop=True)
|
||||
|
||||
cached_grouped_trades: DataFrame | None = self._cached_grouped_trades_per_pair.get(pair)
|
||||
dataframe, cached_grouped_trades = populate_dataframe_with_trades(
|
||||
cached_grouped_trades, self.config, dataframe, trades
|
||||
|
||||
@@ -506,3 +506,70 @@ def test_get_datahandler(testdatadir):
|
||||
assert isinstance(dh, JsonGzDataHandler)
|
||||
dh1 = get_datahandler(testdatadir, "jsongz", dh)
|
||||
assert id(dh1) == id(dh)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def feather_dh(testdatadir):
|
||||
return FeatherDataHandler(testdatadir)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def trades_full(feather_dh):
|
||||
df = feather_dh.trades_load("XRP/ETH", TradingMode.SPOT)
|
||||
assert not df.empty
|
||||
return df
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def timerange_full(trades_full):
|
||||
# Pick a full-span window using actual timestamps
|
||||
startts = int(trades_full["timestamp"].min())
|
||||
stopts = int(trades_full["timestamp"].max())
|
||||
return TimeRange("date", "date", startts=startts, stopts=stopts)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def timerange_mid(trades_full):
|
||||
# Pick a mid-range window using actual timestamps
|
||||
mid_start = int(trades_full["timestamp"].iloc[len(trades_full) // 3])
|
||||
mid_end = int(trades_full["timestamp"].iloc[(2 * len(trades_full)) // 3])
|
||||
return TimeRange("date", "date", startts=mid_start, stopts=mid_end)
|
||||
|
||||
|
||||
def test_feather_trades_timerange_filter_fullspan(feather_dh, trades_full, timerange_full):
|
||||
# Full-span filter should equal unfiltered
|
||||
filtered = feather_dh.trades_load("XRP/ETH", TradingMode.SPOT, timerange=timerange_full)
|
||||
assert_frame_equal(
|
||||
trades_full.reset_index(drop=True), filtered.reset_index(drop=True), check_exact=True
|
||||
)
|
||||
|
||||
|
||||
def test_feather_trades_timerange_filter_subset(feather_dh, trades_full, timerange_mid):
|
||||
# Subset filter should be a subset of the full-span filter
|
||||
subset = feather_dh.trades_load("XRP/ETH", TradingMode.SPOT, timerange=timerange_mid)
|
||||
assert not subset.empty
|
||||
assert subset["timestamp"].min() >= timerange_mid.startts
|
||||
assert subset["timestamp"].max() <= timerange_mid.stopts
|
||||
assert len(subset) < len(trades_full)
|
||||
|
||||
|
||||
def test_feather_trades_timerange_pushdown_fallback(
|
||||
feather_dh, trades_full, timerange_mid, monkeypatch, caplog
|
||||
):
|
||||
# Pushdown filter should fail, so fallback should load the entire file
|
||||
import freqtrade.data.history.datahandlers.featherdatahandler as fdh
|
||||
|
||||
def raise_err(*args, **kwargs):
|
||||
raise ValueError("fail")
|
||||
|
||||
# Mock the dataset loading to raise an error
|
||||
monkeypatch.setattr(fdh.dataset, "dataset", raise_err)
|
||||
|
||||
with caplog.at_level("WARNING"):
|
||||
out = feather_dh.trades_load("XRP/ETH", TradingMode.SPOT, timerange=timerange_mid)
|
||||
|
||||
assert len(out) == len(trades_full)
|
||||
assert any(
|
||||
"Unable to use Arrow filtering, loading entire trades file" in r.message
|
||||
for r in caplog.records
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user