feat: Remove redundant filtering, add tests for pyarrow trade filtering, use date utils for date to ts conversion

This commit is contained in:
Maxime Pagnoulle
2025-08-24 11:59:56 +02:00
parent 82903cc567
commit f21c5ea88a
3 changed files with 71 additions and 19 deletions

View File

@@ -143,7 +143,7 @@ class FeatherDataHandler(IDataHandler):
except (ImportError, AttributeError, ValueError) as e: except (ImportError, AttributeError, ValueError) as e:
# Fallback: load entire file # Fallback: load entire file
logger.debug(f"Unable to use Arrow filtering, loading entire trades file: {e}") logger.warning(f"Unable to use Arrow filtering, loading entire trades file: {e}")
tradesdata = read_feather(filename) tradesdata = read_feather(filename)
return tradesdata return tradesdata

View File

@@ -41,7 +41,7 @@ from freqtrade.strategy.informative_decorator import (
) )
from freqtrade.strategy.strategy_validation import StrategyResultValidator from freqtrade.strategy.strategy_validation import StrategyResultValidator
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
from freqtrade.util import dt_now from freqtrade.util import dt_now, dt_ts
from freqtrade.wallets import Wallets from freqtrade.wallets import Wallets
@@ -1770,29 +1770,14 @@ class IStrategy(ABC, HyperStrategyMixin):
pair = metadata["pair"] pair = metadata["pair"]
# Build timerange from dataframe date column # Build timerange from dataframe date column
if not dataframe.empty: if not dataframe.empty:
start_ts = int(dataframe["date"].iloc[0].timestamp() * 1000) start_ts = dt_ts(dataframe["date"].iloc[0])
end_ts = int(dataframe["date"].iloc[-1].timestamp() * 1000) end_ts = dt_ts(dataframe["date"].iloc[-1])
timerange = TimeRange("date", "date", startts=start_ts, stopts=end_ts) timerange = TimeRange("date", "date", startts=start_ts, stopts=end_ts)
else: else:
timerange = None timerange = None
trades = self.dp.trades(pair=pair, copy=False, timerange=timerange) trades = self.dp.trades(pair=pair, copy=False, timerange=timerange)
# Apply additional filtering with buffer for faster backtesting
if not trades.empty and not dataframe.empty and "timestamp" in trades.columns:
# Add timeframe buffer to ensure complete candle coverage
timeframe_buffer = timeframe_to_seconds(self.config["timeframe"]) * 1000
# Create time bounds with buffer
time_start = start_ts - timeframe_buffer
time_end = end_ts + timeframe_buffer
# Filter trades within buffered timerange
trades_mask = (trades["timestamp"] >= time_start) & (
trades["timestamp"] <= time_end
)
trades = trades.loc[trades_mask].reset_index(drop=True)
cached_grouped_trades: DataFrame | None = self._cached_grouped_trades_per_pair.get(pair) cached_grouped_trades: DataFrame | None = self._cached_grouped_trades_per_pair.get(pair)
dataframe, cached_grouped_trades = populate_dataframe_with_trades( dataframe, cached_grouped_trades = populate_dataframe_with_trades(
cached_grouped_trades, self.config, dataframe, trades cached_grouped_trades, self.config, dataframe, trades

View File

@@ -506,3 +506,70 @@ def test_get_datahandler(testdatadir):
assert isinstance(dh, JsonGzDataHandler) assert isinstance(dh, JsonGzDataHandler)
dh1 = get_datahandler(testdatadir, "jsongz", dh) dh1 = get_datahandler(testdatadir, "jsongz", dh)
assert id(dh1) == id(dh) assert id(dh1) == id(dh)
@pytest.fixture
def feather_dh(testdatadir):
return FeatherDataHandler(testdatadir)
@pytest.fixture
def trades_full(feather_dh):
df = feather_dh.trades_load("XRP/ETH", TradingMode.SPOT)
assert not df.empty
return df
@pytest.fixture
def timerange_full(trades_full):
# Pick a full-span window using actual timestamps
startts = int(trades_full["timestamp"].min())
stopts = int(trades_full["timestamp"].max())
return TimeRange("date", "date", startts=startts, stopts=stopts)
@pytest.fixture
def timerange_mid(trades_full):
# Pick a mid-range window using actual timestamps
mid_start = int(trades_full["timestamp"].iloc[len(trades_full) // 3])
mid_end = int(trades_full["timestamp"].iloc[(2 * len(trades_full)) // 3])
return TimeRange("date", "date", startts=mid_start, stopts=mid_end)
def test_feather_trades_timerange_filter_fullspan(feather_dh, trades_full, timerange_full):
# Full-span filter should equal unfiltered
filtered = feather_dh.trades_load("XRP/ETH", TradingMode.SPOT, timerange=timerange_full)
assert_frame_equal(
trades_full.reset_index(drop=True), filtered.reset_index(drop=True), check_exact=True
)
def test_feather_trades_timerange_filter_subset(feather_dh, trades_full, timerange_mid):
# Subset filter should be a subset of the full-span filter
subset = feather_dh.trades_load("XRP/ETH", TradingMode.SPOT, timerange=timerange_mid)
assert not subset.empty
assert subset["timestamp"].min() >= timerange_mid.startts
assert subset["timestamp"].max() <= timerange_mid.stopts
assert len(subset) < len(trades_full)
def test_feather_trades_timerange_pushdown_fallback(
feather_dh, trades_full, timerange_mid, monkeypatch, caplog
):
# Pushdown filter should fail, so fallback should load the entire file
import freqtrade.data.history.datahandlers.featherdatahandler as fdh
def raise_err(*args, **kwargs):
raise ValueError("fail")
# Mock the dataset loading to raise an error
monkeypatch.setattr(fdh.dataset, "dataset", raise_err)
with caplog.at_level("WARNING"):
out = feather_dh.trades_load("XRP/ETH", TradingMode.SPOT, timerange=timerange_mid)
assert len(out) == len(trades_full)
assert any(
"Unable to use Arrow filtering, loading entire trades file" in r.message
for r in caplog.records
)