mirror of
https://github.com/freqtrade/freqtrade.git
synced 2025-12-01 17:43:06 +00:00
ruff format: freqai
This commit is contained in:
@@ -31,11 +31,12 @@ def download_all_data_for_training(dp: DataProvider, config: Config) -> None:
|
||||
"""
|
||||
|
||||
if dp._exchange is None:
|
||||
raise OperationalException('No exchange object found.')
|
||||
raise OperationalException("No exchange object found.")
|
||||
markets = [
|
||||
p for p in dp._exchange.get_markets(
|
||||
tradable_only=True, active_only=not config.get('include_inactive')
|
||||
).keys()
|
||||
p
|
||||
for p in dp._exchange.get_markets(
|
||||
tradable_only=True, active_only=not config.get("include_inactive")
|
||||
).keys()
|
||||
]
|
||||
|
||||
all_pairs = dynamic_expand_pairlist(config, markets)
|
||||
@@ -73,42 +74,39 @@ def get_required_data_timerange(config: Config) -> TimeRange:
|
||||
if secs > max_tf_seconds:
|
||||
max_tf_seconds = secs
|
||||
|
||||
startup_candles = config.get('startup_candle_count', 0)
|
||||
startup_candles = config.get("startup_candle_count", 0)
|
||||
indicator_periods = config["freqai"]["feature_parameters"]["indicator_periods_candles"]
|
||||
|
||||
# factor the max_period as a factor of safety.
|
||||
max_period = int(max(startup_candles, max(indicator_periods)) * 1.5)
|
||||
config['startup_candle_count'] = max_period
|
||||
logger.info(f'FreqAI auto-downloader using {max_period} startup candles.')
|
||||
config["startup_candle_count"] = max_period
|
||||
logger.info(f"FreqAI auto-downloader using {max_period} startup candles.")
|
||||
|
||||
additional_seconds = max_period * max_tf_seconds
|
||||
|
||||
startts = int(
|
||||
time
|
||||
- config["freqai"].get("train_period_days", 0) * 86400
|
||||
- additional_seconds
|
||||
)
|
||||
startts = int(time - config["freqai"].get("train_period_days", 0) * 86400 - additional_seconds)
|
||||
stopts = int(time)
|
||||
data_load_timerange = TimeRange('date', 'date', startts, stopts)
|
||||
data_load_timerange = TimeRange("date", "date", startts, stopts)
|
||||
|
||||
return data_load_timerange
|
||||
|
||||
|
||||
def plot_feature_importance(model: Any, pair: str, dk: FreqaiDataKitchen,
|
||||
count_max: int = 25) -> None:
|
||||
def plot_feature_importance(
|
||||
model: Any, pair: str, dk: FreqaiDataKitchen, count_max: int = 25
|
||||
) -> None:
|
||||
"""
|
||||
Plot Best and worst features by importance for a single sub-train.
|
||||
:param model: Any = A model which was `fit` using a common library
|
||||
such as catboost or lightgbm
|
||||
:param pair: str = pair e.g. BTC/USD
|
||||
:param dk: FreqaiDataKitchen = non-persistent data container for current coin/loop
|
||||
:param count_max: int = the amount of features to be loaded per column
|
||||
Plot Best and worst features by importance for a single sub-train.
|
||||
:param model: Any = A model which was `fit` using a common library
|
||||
such as catboost or lightgbm
|
||||
:param pair: str = pair e.g. BTC/USD
|
||||
:param dk: FreqaiDataKitchen = non-persistent data container for current coin/loop
|
||||
:param count_max: int = the amount of features to be loaded per column
|
||||
"""
|
||||
from freqtrade.plot.plotting import go, make_subplots, store_plot_file
|
||||
|
||||
# Extract feature importance from model
|
||||
models = {}
|
||||
if 'FreqaiMultiOutputRegressor' in str(model.__class__):
|
||||
if "FreqaiMultiOutputRegressor" in str(model.__class__):
|
||||
for estimator, label in zip(model.estimators_, dk.label_list):
|
||||
models[label] = estimator
|
||||
else:
|
||||
@@ -123,14 +121,16 @@ def plot_feature_importance(model: Any, pair: str, dk: FreqaiDataKitchen,
|
||||
elif "xgb" in str(mdl.__class__):
|
||||
feature_importance = mdl.feature_importances_
|
||||
else:
|
||||
logger.info('Model type does not support generating feature importances.')
|
||||
logger.info("Model type does not support generating feature importances.")
|
||||
return
|
||||
|
||||
# Data preparation
|
||||
fi_df = pd.DataFrame({
|
||||
"feature_names": np.array(dk.data_dictionary['train_features'].columns),
|
||||
"feature_importance": np.array(feature_importance)
|
||||
})
|
||||
fi_df = pd.DataFrame(
|
||||
{
|
||||
"feature_names": np.array(dk.data_dictionary["train_features"].columns),
|
||||
"feature_importance": np.array(feature_importance),
|
||||
}
|
||||
)
|
||||
fi_df_top = fi_df.nlargest(count_max, "feature_importance")[::-1]
|
||||
fi_df_worst = fi_df.nsmallest(count_max, "feature_importance")[::-1]
|
||||
|
||||
@@ -140,14 +140,18 @@ def plot_feature_importance(model: Any, pair: str, dk: FreqaiDataKitchen,
|
||||
go.Bar(
|
||||
x=fi_df["feature_importance"],
|
||||
y=fi_df["feature_names"],
|
||||
orientation='h', showlegend=False
|
||||
), row=1, col=col
|
||||
orientation="h",
|
||||
showlegend=False,
|
||||
),
|
||||
row=1,
|
||||
col=col,
|
||||
)
|
||||
|
||||
fig = make_subplots(rows=1, cols=2, horizontal_spacing=0.5)
|
||||
fig = add_feature_trace(fig, fi_df_top, 1)
|
||||
fig = add_feature_trace(fig, fi_df_worst, 2)
|
||||
fig.update_layout(title_text=f"Best and worst features by importance {pair}")
|
||||
label = label.replace('&', '').replace('%', '') # escape two FreqAI specific characters
|
||||
label = label.replace("&", "").replace("%", "") # escape two FreqAI specific characters
|
||||
store_plot_file(fig, f"{dk.model_filename}-{label}.html", dk.data_path)
|
||||
|
||||
|
||||
@@ -158,12 +162,12 @@ def record_params(config: Dict[str, Any], full_path: Path) -> None:
|
||||
params_record_path = full_path / "run_params.json"
|
||||
|
||||
run_params = {
|
||||
"freqai": config.get('freqai', {}),
|
||||
"timeframe": config.get('timeframe'),
|
||||
"stake_amount": config.get('stake_amount'),
|
||||
"stake_currency": config.get('stake_currency'),
|
||||
"max_open_trades": config.get('max_open_trades'),
|
||||
"pairs": config.get('exchange', {}).get('pair_whitelist')
|
||||
"freqai": config.get("freqai", {}),
|
||||
"timeframe": config.get("timeframe"),
|
||||
"stake_amount": config.get("stake_amount"),
|
||||
"stake_currency": config.get("stake_currency"),
|
||||
"max_open_trades": config.get("max_open_trades"),
|
||||
"pairs": config.get("exchange", {}).get("pair_whitelist"),
|
||||
}
|
||||
|
||||
with params_record_path.open("w") as handle:
|
||||
@@ -172,7 +176,7 @@ def record_params(config: Dict[str, Any], full_path: Path) -> None:
|
||||
handle,
|
||||
indent=4,
|
||||
default=str,
|
||||
number_mode=rapidjson.NM_NATIVE | rapidjson.NM_NAN
|
||||
number_mode=rapidjson.NM_NATIVE | rapidjson.NM_NAN,
|
||||
)
|
||||
|
||||
|
||||
@@ -191,10 +195,11 @@ def get_timerange_backtest_live_models(config: Config) -> str:
|
||||
|
||||
|
||||
def get_tb_logger(model_type: str, path: Path, activate: bool) -> Any:
|
||||
|
||||
if model_type == "pytorch" and activate:
|
||||
from freqtrade.freqai.tensorboard import TBLogger
|
||||
|
||||
return TBLogger(path, activate)
|
||||
else:
|
||||
from freqtrade.freqai.tensorboard.base_tensorboard import BaseTensorboardLogger
|
||||
|
||||
return BaseTensorboardLogger(path, activate)
|
||||
|
||||
Reference in New Issue
Block a user