diff --git a/freqtrade/freqai/data_drawer.py b/freqtrade/freqai/data_drawer.py index 0306282c0..a0c902f48 100644 --- a/freqtrade/freqai/data_drawer.py +++ b/freqtrade/freqai/data_drawer.py @@ -296,8 +296,7 @@ class FreqaiDataDrawer: f"for more than {len(dataframe.index)} candles.") df_concat = pd.concat([hist_preds, new_pred], ignore_index=True, keys=hist_preds.keys()) - # remove last row because we will append that later in append_model_predictions() - df_concat = df_concat.iloc[:-1] + # any missing values will get zeroed out so users can see the exact # downtime in FreqUI df_concat = df_concat.fillna(0) diff --git a/tests/freqai/test_freqai_datadrawer.py b/tests/freqai/test_freqai_datadrawer.py index ca4749747..2d1b1c691 100644 --- a/tests/freqai/test_freqai_datadrawer.py +++ b/tests/freqai/test_freqai_datadrawer.py @@ -179,10 +179,9 @@ def test_set_initial_return_values(mocker, freqai_conf): hist_pred_df = freqai.dd.historic_predictions[pair] model_return_df = freqai.dd.model_return_values[pair] - assert (hist_pred_df['date_pred'].iloc[-1] == - pd.Timestamp(end_x_plus_5) - pd.Timedelta(days=1)) + assert hist_pred_df['date_pred'].iloc[-1] == pd.Timestamp(end_x_plus_5) assert 'date_pred' in hist_pred_df.columns - assert hist_pred_df.shape[0] == 7 # Total rows: 5 from historic and 2 new zeros + assert hist_pred_df.shape[0] == 8 # compare values in model_return_df with hist_pred_df assert (model_return_df["value"].values == @@ -234,9 +233,9 @@ def test_set_initial_return_values_warning(mocker, freqai_conf): hist_pred_df = freqai.dd.historic_predictions[pair] model_return_df = freqai.dd.model_return_values[pair] - assert hist_pred_df['date_pred'].iloc[-1] == pd.Timestamp(end_x_plus_5) - pd.Timedelta(days=1) + assert hist_pred_df['date_pred'].iloc[-1] == pd.Timestamp(end_x_plus_5) assert 'date_pred' in hist_pred_df.columns - assert hist_pred_df.shape[0] == 9 # Total rows: 5 from historic and 4 new zeros + assert hist_pred_df.shape[0] == 10 # compare values in model_return_df with hist_pred_df assert (model_return_df["value"].values == hist_pred_df.tail(