mirror of
https://github.com/freqtrade/freqtrade.git
synced 2025-12-19 06:11:15 +00:00
fix: ensure test_size=0 is still accommodated
This commit is contained in:
@@ -126,11 +126,12 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
|||||||
dd["train_labels"],
|
dd["train_labels"],
|
||||||
dd["train_weights"])
|
dd["train_weights"])
|
||||||
|
|
||||||
(dd["test_features"],
|
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
|
||||||
dd["test_labels"],
|
(dd["test_features"],
|
||||||
dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
|
dd["test_labels"],
|
||||||
dd["test_labels"],
|
dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
|
||||||
dd["test_weights"])
|
dd["test_labels"],
|
||||||
|
dd["test_weights"])
|
||||||
|
|
||||||
logger.info(
|
logger.info(
|
||||||
f'Training model on {len(dk.data_dictionary["train_features"].columns)}'
|
f'Training model on {len(dk.data_dictionary["train_features"].columns)}'
|
||||||
|
|||||||
@@ -61,11 +61,12 @@ class BaseClassifierModel(IFreqaiModel):
|
|||||||
dd["train_labels"],
|
dd["train_labels"],
|
||||||
dd["train_weights"])
|
dd["train_weights"])
|
||||||
|
|
||||||
(dd["test_features"],
|
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
|
||||||
dd["test_labels"],
|
(dd["test_features"],
|
||||||
dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
|
dd["test_labels"],
|
||||||
dd["test_labels"],
|
dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
|
||||||
dd["test_weights"])
|
dd["test_labels"],
|
||||||
|
dd["test_weights"])
|
||||||
|
|
||||||
logger.info(
|
logger.info(
|
||||||
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
|
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
|
||||||
|
|||||||
@@ -197,11 +197,12 @@ class BasePyTorchClassifier(BasePyTorchModel):
|
|||||||
dd["train_labels"],
|
dd["train_labels"],
|
||||||
dd["train_weights"])
|
dd["train_weights"])
|
||||||
|
|
||||||
(dd["test_features"],
|
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
|
||||||
dd["test_labels"],
|
(dd["test_features"],
|
||||||
dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
|
dd["test_labels"],
|
||||||
dd["test_labels"],
|
dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
|
||||||
dd["test_weights"])
|
dd["test_labels"],
|
||||||
|
dd["test_weights"])
|
||||||
|
|
||||||
logger.info(
|
logger.info(
|
||||||
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
|
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
|
||||||
|
|||||||
@@ -96,12 +96,15 @@ class BasePyTorchRegressor(BasePyTorchModel):
|
|||||||
dd["train_weights"]) = dk.feature_pipeline.fit_transform(dd["train_features"],
|
dd["train_weights"]) = dk.feature_pipeline.fit_transform(dd["train_features"],
|
||||||
dd["train_labels"],
|
dd["train_labels"],
|
||||||
dd["train_weights"])
|
dd["train_weights"])
|
||||||
|
dd["train_labels"], _, _ = dk.label_pipeline.fit_transform(dd["train_labels"])
|
||||||
|
|
||||||
(dd["test_features"],
|
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
|
||||||
dd["test_labels"],
|
(dd["test_features"],
|
||||||
dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
|
dd["test_labels"],
|
||||||
dd["test_labels"],
|
dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
|
||||||
dd["test_weights"])
|
dd["test_labels"],
|
||||||
|
dd["test_weights"])
|
||||||
|
dd["test_labels"], _, _ = dk.label_pipeline.transform(dd["test_labels"])
|
||||||
|
|
||||||
logger.info(
|
logger.info(
|
||||||
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
|
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
|
||||||
|
|||||||
@@ -60,15 +60,15 @@ class BaseRegressionModel(IFreqaiModel):
|
|||||||
dd["train_weights"]) = dk.feature_pipeline.fit_transform(dd["train_features"],
|
dd["train_weights"]) = dk.feature_pipeline.fit_transform(dd["train_features"],
|
||||||
dd["train_labels"],
|
dd["train_labels"],
|
||||||
dd["train_weights"])
|
dd["train_weights"])
|
||||||
|
|
||||||
(dd["test_features"],
|
|
||||||
dd["test_labels"],
|
|
||||||
dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
|
|
||||||
dd["test_labels"],
|
|
||||||
dd["test_weights"])
|
|
||||||
|
|
||||||
dd["train_labels"], _, _ = dk.label_pipeline.fit_transform(dd["train_labels"])
|
dd["train_labels"], _, _ = dk.label_pipeline.fit_transform(dd["train_labels"])
|
||||||
dd["test_labels"], _, _ = dk.label_pipeline.transform(dd["test_labels"])
|
|
||||||
|
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
|
||||||
|
(dd["test_features"],
|
||||||
|
dd["test_labels"],
|
||||||
|
dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
|
||||||
|
dd["test_labels"],
|
||||||
|
dd["test_weights"])
|
||||||
|
dd["test_labels"], _, _ = dk.label_pipeline.transform(dd["test_labels"])
|
||||||
|
|
||||||
logger.info(
|
logger.info(
|
||||||
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
|
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
|
||||||
|
|||||||
Reference in New Issue
Block a user