Use backtesting output for hyperopt results

This commit is contained in:
Matthias
2021-04-28 22:33:58 +02:00
parent 545cba7fd8
commit 6aaaad29d7
2 changed files with 61 additions and 48 deletions

View File

@@ -12,7 +12,7 @@ from colorama import Fore, Style
from pandas import isna, json_normalize
from freqtrade.exceptions import OperationalException
from freqtrade.misc import round_dict
from freqtrade.misc import round_coin_value, round_dict
logger = logging.getLogger(__name__)
@@ -169,11 +169,24 @@ class HyperoptTools():
# Ensure compatibility with older versions of hyperopt results
trials['results_metrics.winsdrawslosses'] = 'N/A'
trials = trials[['Best', 'current_epoch', 'results_metrics.trade_count',
'results_metrics.winsdrawslosses',
'results_metrics.avg_profit', 'results_metrics.total_profit',
'results_metrics.profit', 'results_metrics.duration',
'loss', 'is_initial_point', 'is_best']]
if 'results_metrics.total_trades' in trials:
# New mode, using backtest result for metrics
trials['results_metrics.winsdrawslosses'] = trials.apply(
lambda x: f"{x['results_metrics.wins']} {x['results_metrics.draws']:>4} "
f"{x['results_metrics.losses']:>4}", axis=1)
trials = trials[['Best', 'current_epoch', 'results_metrics.total_trades',
'results_metrics.winsdrawslosses',
'results_metrics.profit_mean', 'results_metrics.profit_total_abs',
'results_metrics.profit_total', 'results_metrics.holding_avg',
'loss', 'is_initial_point', 'is_best']]
else:
# Legacy mode
trials = trials[['Best', 'current_epoch', 'results_metrics.trade_count',
'results_metrics.winsdrawslosses',
'results_metrics.avg_profit', 'results_metrics.total_profit',
'results_metrics.profit', 'results_metrics.duration',
'loss', 'is_initial_point', 'is_best']]
trials.columns = ['Best', 'Epoch', 'Trades', ' Win Draw Loss', 'Avg profit',
'Total profit', 'Profit', 'Avg duration', 'Objective',
'is_initial_point', 'is_best']
@@ -188,21 +201,23 @@ class HyperoptTools():
lambda x: '{}/{}'.format(str(x).rjust(len(str(total_epochs)), ' '), total_epochs)
)
trials['Avg profit'] = trials['Avg profit'].apply(
lambda x: '{:,.2f}%'.format(x).rjust(7, ' ') if not isna(x) else "--".rjust(7, ' ')
lambda x: f'{x:,.2f}%'.rjust(7, ' ') if not isna(x) else "--".rjust(7, ' ')
)
trials['Avg duration'] = trials['Avg duration'].apply(
lambda x: '{:,.1f} m'.format(x).rjust(7, ' ') if not isna(x) else "--".rjust(7, ' ')
lambda x: f'{x:,.1f} m'.rjust(7, ' ') if isinstance(x, float) else f"{x}"
if not isna(x) else "--".rjust(7, ' ')
)
trials['Objective'] = trials['Objective'].apply(
lambda x: '{:,.5f}'.format(x).rjust(8, ' ') if x != 100000 else "N/A".rjust(8, ' ')
lambda x: f'{x:,.5f}'.rjust(8, ' ') if x != 100000 else "N/A".rjust(8, ' ')
)
stake_currency = config['stake_currency']
trials['Profit'] = trials.apply(
lambda x: '{:,.8f} {} {}'.format(
x['Total profit'], config['stake_currency'],
lambda x: '{} {}'.format(
round_coin_value(x['Total profit'], stake_currency),
'({:,.2f}%)'.format(x['Profit']).rjust(10, ' ')
).rjust(25+len(config['stake_currency']))
if x['Total profit'] != 0.0 else '--'.rjust(25+len(config['stake_currency'])),
).rjust(25+len(stake_currency))
if x['Total profit'] != 0.0 else '--'.rjust(25+len(stake_currency)),
axis=1
)
trials = trials.drop(columns=['Total profit'])