mirror of
https://github.com/freqtrade/freqtrade.git
synced 2025-12-02 10:03:05 +00:00
Use backtesting output for hyperopt results
This commit is contained in:
@@ -12,7 +12,7 @@ from colorama import Fore, Style
|
||||
from pandas import isna, json_normalize
|
||||
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.misc import round_dict
|
||||
from freqtrade.misc import round_coin_value, round_dict
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -169,11 +169,24 @@ class HyperoptTools():
|
||||
# Ensure compatibility with older versions of hyperopt results
|
||||
trials['results_metrics.winsdrawslosses'] = 'N/A'
|
||||
|
||||
trials = trials[['Best', 'current_epoch', 'results_metrics.trade_count',
|
||||
'results_metrics.winsdrawslosses',
|
||||
'results_metrics.avg_profit', 'results_metrics.total_profit',
|
||||
'results_metrics.profit', 'results_metrics.duration',
|
||||
'loss', 'is_initial_point', 'is_best']]
|
||||
if 'results_metrics.total_trades' in trials:
|
||||
# New mode, using backtest result for metrics
|
||||
trials['results_metrics.winsdrawslosses'] = trials.apply(
|
||||
lambda x: f"{x['results_metrics.wins']} {x['results_metrics.draws']:>4} "
|
||||
f"{x['results_metrics.losses']:>4}", axis=1)
|
||||
trials = trials[['Best', 'current_epoch', 'results_metrics.total_trades',
|
||||
'results_metrics.winsdrawslosses',
|
||||
'results_metrics.profit_mean', 'results_metrics.profit_total_abs',
|
||||
'results_metrics.profit_total', 'results_metrics.holding_avg',
|
||||
'loss', 'is_initial_point', 'is_best']]
|
||||
else:
|
||||
# Legacy mode
|
||||
trials = trials[['Best', 'current_epoch', 'results_metrics.trade_count',
|
||||
'results_metrics.winsdrawslosses',
|
||||
'results_metrics.avg_profit', 'results_metrics.total_profit',
|
||||
'results_metrics.profit', 'results_metrics.duration',
|
||||
'loss', 'is_initial_point', 'is_best']]
|
||||
|
||||
trials.columns = ['Best', 'Epoch', 'Trades', ' Win Draw Loss', 'Avg profit',
|
||||
'Total profit', 'Profit', 'Avg duration', 'Objective',
|
||||
'is_initial_point', 'is_best']
|
||||
@@ -188,21 +201,23 @@ class HyperoptTools():
|
||||
lambda x: '{}/{}'.format(str(x).rjust(len(str(total_epochs)), ' '), total_epochs)
|
||||
)
|
||||
trials['Avg profit'] = trials['Avg profit'].apply(
|
||||
lambda x: '{:,.2f}%'.format(x).rjust(7, ' ') if not isna(x) else "--".rjust(7, ' ')
|
||||
lambda x: f'{x:,.2f}%'.rjust(7, ' ') if not isna(x) else "--".rjust(7, ' ')
|
||||
)
|
||||
trials['Avg duration'] = trials['Avg duration'].apply(
|
||||
lambda x: '{:,.1f} m'.format(x).rjust(7, ' ') if not isna(x) else "--".rjust(7, ' ')
|
||||
lambda x: f'{x:,.1f} m'.rjust(7, ' ') if isinstance(x, float) else f"{x}"
|
||||
if not isna(x) else "--".rjust(7, ' ')
|
||||
)
|
||||
trials['Objective'] = trials['Objective'].apply(
|
||||
lambda x: '{:,.5f}'.format(x).rjust(8, ' ') if x != 100000 else "N/A".rjust(8, ' ')
|
||||
lambda x: f'{x:,.5f}'.rjust(8, ' ') if x != 100000 else "N/A".rjust(8, ' ')
|
||||
)
|
||||
|
||||
stake_currency = config['stake_currency']
|
||||
trials['Profit'] = trials.apply(
|
||||
lambda x: '{:,.8f} {} {}'.format(
|
||||
x['Total profit'], config['stake_currency'],
|
||||
lambda x: '{} {}'.format(
|
||||
round_coin_value(x['Total profit'], stake_currency),
|
||||
'({:,.2f}%)'.format(x['Profit']).rjust(10, ' ')
|
||||
).rjust(25+len(config['stake_currency']))
|
||||
if x['Total profit'] != 0.0 else '--'.rjust(25+len(config['stake_currency'])),
|
||||
).rjust(25+len(stake_currency))
|
||||
if x['Total profit'] != 0.0 else '--'.rjust(25+len(stake_currency)),
|
||||
axis=1
|
||||
)
|
||||
trials = trials.drop(columns=['Total profit'])
|
||||
|
||||
Reference in New Issue
Block a user