diff --git a/freqtrade/freqai/freqai_interface.py b/freqtrade/freqai/freqai_interface.py index 5850cdeb3..bdc418083 100644 --- a/freqtrade/freqai/freqai_interface.py +++ b/freqtrade/freqai/freqai_interface.py @@ -244,7 +244,8 @@ class IFreqaiModel(ABC): # following tr_train. Both of these windows slide through the # entire backtest for tr_train, tr_backtest in zip(dk.training_timeranges, dk.backtesting_timeranges): - (_, _, _) = self.dd.get_pair_dict_info(metadata["pair"]) + pair = metadata["pair"] + (_, _, _) = self.dd.get_pair_dict_info(pair) train_it += 1 total_trains = len(dk.backtesting_timeranges) self.training_timerange = tr_train @@ -266,12 +267,10 @@ class IFreqaiModel(ABC): trained_timestamp_int = int(trained_timestamp.stopts) dk.data_path = Path( - dk.full_path - / - f"sub-train-{metadata['pair'].split('/')[0]}_{trained_timestamp_int}" + dk.full_path / f"sub-train-{pair.split('/')[0]}_{trained_timestamp_int}" ) - dk.set_new_model_names(metadata["pair"], trained_timestamp) + dk.set_new_model_names(pair, trained_timestamp) if dk.check_if_backtest_prediction_exists(): append_df = dk.get_backtesting_prediction() @@ -281,15 +280,15 @@ class IFreqaiModel(ABC): metadata["pair"], dk, trained_timestamp=trained_timestamp_int ): dk.find_features(dataframe_train) - self.model = self.train(dataframe_train, metadata["pair"], dk) - self.dd.pair_dict[metadata["pair"]]["trained_timestamp"] = int( + self.model = self.train(dataframe_train, pair, dk) + self.dd.pair_dict[pair]["trained_timestamp"] = int( trained_timestamp.stopts) if self.save_backtest_models: logger.info('Saving backtest model to disk.') - self.dd.save_data(self.model, metadata["pair"], dk) + self.dd.save_data(self.model, pair, dk) else: - self.model = self.dd.load_data(metadata["pair"], dk) + self.model = self.dd.load_data(pair, dk) self.check_if_feature_list_matches_strategy(dataframe_train, dk)