diff --git a/freqtrade/freqai/base_models/FreqaiMultiOutputClassifier.py b/freqtrade/freqai/base_models/FreqaiMultiOutputClassifier.py index 435c0e646..4646bb9a8 100644 --- a/freqtrade/freqai/base_models/FreqaiMultiOutputClassifier.py +++ b/freqtrade/freqai/base_models/FreqaiMultiOutputClassifier.py @@ -1,9 +1,8 @@ import numpy as np -from joblib import Parallel from sklearn.base import is_classifier from sklearn.multioutput import MultiOutputClassifier, _fit_estimator -from sklearn.utils.fixes import delayed from sklearn.utils.multiclass import check_classification_targets +from sklearn.utils.parallel import Parallel, delayed from sklearn.utils.validation import has_fit_parameter from freqtrade.exceptions import OperationalException diff --git a/freqtrade/freqai/base_models/FreqaiMultiOutputRegressor.py b/freqtrade/freqai/base_models/FreqaiMultiOutputRegressor.py index 54136d5e0..a6cc4f39b 100644 --- a/freqtrade/freqai/base_models/FreqaiMultiOutputRegressor.py +++ b/freqtrade/freqai/base_models/FreqaiMultiOutputRegressor.py @@ -1,6 +1,5 @@ -from joblib import Parallel from sklearn.multioutput import MultiOutputRegressor, _fit_estimator -from sklearn.utils.fixes import delayed +from sklearn.utils.parallel import Parallel, delayed from sklearn.utils.validation import has_fit_parameter diff --git a/freqtrade/freqai/data_drawer.py b/freqtrade/freqai/data_drawer.py index 2a3ec6dd2..edd9640c9 100644 --- a/freqtrade/freqai/data_drawer.py +++ b/freqtrade/freqai/data_drawer.py @@ -469,7 +469,7 @@ class FreqaiDataDrawer: with (save_path / f"{dk.model_filename}_{LABEL_PIPELINE}.pkl").open("wb") as fp: cloudpickle.dump(dk.label_pipeline, fp) - # save the train data to file so we can check preds for area of applicability later + # save the train data to file for post processing if desired dk.data_dictionary["train_features"].to_pickle( save_path / f"{dk.model_filename}_{TRAINDF}.pkl" ) @@ -484,7 +484,6 @@ class FreqaiDataDrawer: if coin not in self.meta_data_dictionary: self.meta_data_dictionary[coin] = {} - self.meta_data_dictionary[coin][TRAINDF] = dk.data_dictionary["train_features"] self.meta_data_dictionary[coin][METADATA] = dk.data self.meta_data_dictionary[coin][FEATURE_PIPELINE] = dk.feature_pipeline self.meta_data_dictionary[coin][LABEL_PIPELINE] = dk.label_pipeline @@ -518,16 +517,12 @@ class FreqaiDataDrawer: if coin in self.meta_data_dictionary: dk.data = self.meta_data_dictionary[coin][METADATA] - dk.data_dictionary["train_features"] = self.meta_data_dictionary[coin][TRAINDF] dk.feature_pipeline = self.meta_data_dictionary[coin][FEATURE_PIPELINE] dk.label_pipeline = self.meta_data_dictionary[coin][LABEL_PIPELINE] else: with (dk.data_path / f"{dk.model_filename}_{METADATA}.json").open("r") as fp: dk.data = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE) - dk.data_dictionary["train_features"] = pd.read_pickle( - dk.data_path / f"{dk.model_filename}_{TRAINDF}.pkl" - ) with (dk.data_path / f"{dk.model_filename}_{FEATURE_PIPELINE}.pkl").open("rb") as fp: dk.feature_pipeline = cloudpickle.load(fp) with (dk.data_path / f"{dk.model_filename}_{LABEL_PIPELINE}.pkl").open("rb") as fp: