Deployed 82e3e3d to develop in en with MkDocs 1.6.1 and mike 2.1.3

This commit is contained in:
github-actions[bot]
2025-01-06 11:41:15 +00:00
parent b0f70a5126
commit 3fc79dd8d4

View File

@@ -1810,7 +1810,7 @@
<li><strong>Extensibility</strong> - The generalized and robust architecture allows for incorporating any <a href="../freqai-configuration/#using-different-prediction-models">machine learning library/method</a> available in Python. Eight examples are currently available, including classifiers, regressors, and a convolutional neural network</li>
<li><strong>Smart outlier removal</strong> - Remove outliers from training and prediction data sets using a variety of <a href="../freqai-feature-engineering/#outlier-detection">outlier detection techniques</a></li>
<li><strong>Crash resilience</strong> - Store trained models to disk to make reloading from a crash fast and easy, and <a href="../freqai-running/#purging-old-model-data">purge obsolete files</a> for sustained dry/live runs</li>
<li><strong>Automatic data normalization</strong> - <a href="../freqai-feature-engineering/#feature-normalization">Normalize the data</a> in a smart and statistically safe way</li>
<li><strong>Automatic data normalization</strong> - <a href="../freqai-feature-engineering/#building-the-data-pipeline">Normalize the data</a> in a smart and statistically safe way</li>
<li><strong>Automatic data download</strong> - Compute timeranges for data downloads and update historic data (in live deployments)</li>
<li><strong>Cleaning of incoming data</strong> - Handle NaNs safely before training and model inferencing</li>
<li><strong>Dimensionality reduction</strong> - Reduce the size of the training data via <a href="../freqai-feature-engineering/#data-dimensionality-reduction-with-principal-component-analysis">Principal Component Analysis</a></li>