diff --git a/freqtrade/freqai/data_kitchen.py b/freqtrade/freqai/data_kitchen.py index e09a2d0d5..da0d7e4df 100644 --- a/freqtrade/freqai/data_kitchen.py +++ b/freqtrade/freqai/data_kitchen.py @@ -696,28 +696,19 @@ class FreqaiDataKitchen: time = datetime.datetime.now(tz=datetime.timezone.utc).timestamp() if trained_timerange.startts != 0: - # trained_timerange = TimeRange.parse_timerange(training_timerange) - # keep hour available incase user wants to train multiple times per day - # training_timerange is a str for day range only, so we add the extra hours - # original_stop_seconds = trained_timerange.stopts - # trained_timerange.stopts += int(timestamp - original_stop_seconds) - # trained_timerange.startts += int(timestamp - original_stop_seconds) elapsed_time = (time - trained_timerange.stopts) / SECONDS_IN_DAY retrain = elapsed_time > self.freqai_config['backtest_period'] if retrain: trained_timerange.startts += self.freqai_config['backtest_period'] * SECONDS_IN_DAY trained_timerange.stopts += self.freqai_config['backtest_period'] * SECONDS_IN_DAY else: # user passed no live_trained_timerange in config - trained_timerange = TimeRange.parse_timerange("20000101-20000201") # arbitrary date + trained_timerange = TimeRange() trained_timerange.startts = int(time - self.freqai_config['train_period'] * SECONDS_IN_DAY) trained_timerange.stopts = int(time) retrain = True timestamp = trained_timerange.stopts - # start = datetime.datetime.utcfromtimestamp(trained_timerange.startts) - # stop = datetime.datetime.utcfromtimestamp(trained_timerange.stopts) - # new_trained_timerange_str = start.strftime("%Y%m%d") + "-" + stop.strftime("%Y%m%d") if retrain: coin, _ = metadata['pair'].split("/")