mirror of
https://github.com/freqtrade/freqtrade.git
synced 2025-12-18 13:51:16 +00:00
start transition toward outsourcing the data pipeline with objective of improving pipeline flexibility
This commit is contained in:
@@ -7,14 +7,15 @@ import torch
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.freqai_interface import IFreqaiModel
|
||||
# from freqtrade.freqai.freqai_interface import IFreqaiModel
|
||||
from freqtrade.freqai.base_models import BaseRegressionModel
|
||||
from freqtrade.freqai.torch.PyTorchDataConvertor import PyTorchDataConvertor
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class BasePyTorchModel(IFreqaiModel, ABC):
|
||||
class BasePyTorchModel(BaseRegressionModel):
|
||||
"""
|
||||
Base class for PyTorch type models.
|
||||
User *must* inherit from this class and set fit() and predict() and
|
||||
@@ -29,50 +30,50 @@ class BasePyTorchModel(IFreqaiModel, ABC):
|
||||
self.splits = ["train", "test"] if test_size != 0 else ["train"]
|
||||
self.window_size = self.freqai_info.get("conv_width", 1)
|
||||
|
||||
def train(
|
||||
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
|
||||
) -> Any:
|
||||
"""
|
||||
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
|
||||
for storing, saving, loading, and analyzing the data.
|
||||
:param unfiltered_df: Full dataframe for the current training period
|
||||
:return:
|
||||
:model: Trained model which can be used to inference (self.predict)
|
||||
"""
|
||||
# def train(
|
||||
# self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
|
||||
# ) -> Any:
|
||||
# """
|
||||
# Filter the training data and train a model to it. Train makes heavy use of the datakitchen
|
||||
# for storing, saving, loading, and analyzing the data.
|
||||
# :param unfiltered_df: Full dataframe for the current training period
|
||||
# :return:
|
||||
# :model: Trained model which can be used to inference (self.predict)
|
||||
# """
|
||||
|
||||
logger.info(f"-------------------- Starting training {pair} --------------------")
|
||||
# logger.info(f"-------------------- Starting training {pair} --------------------")
|
||||
|
||||
start_time = time()
|
||||
# start_time = time()
|
||||
|
||||
features_filtered, labels_filtered = dk.filter_features(
|
||||
unfiltered_df,
|
||||
dk.training_features_list,
|
||||
dk.label_list,
|
||||
training_filter=True,
|
||||
)
|
||||
# features_filtered, labels_filtered = dk.filter_features(
|
||||
# unfiltered_df,
|
||||
# dk.training_features_list,
|
||||
# dk.label_list,
|
||||
# training_filter=True,
|
||||
# )
|
||||
|
||||
# split data into train/test data.
|
||||
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
|
||||
if not self.freqai_info.get("fit_live_predictions", 0) or not self.live:
|
||||
dk.fit_labels()
|
||||
# normalize all data based on train_dataset only
|
||||
data_dictionary = dk.normalize_data(data_dictionary)
|
||||
# # split data into train/test data.
|
||||
# data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
|
||||
# if not self.freqai_info.get("fit_live_predictions", 0) or not self.live:
|
||||
# dk.fit_labels()
|
||||
# # normalize all data based on train_dataset only
|
||||
# data_dictionary = dk.normalize_data(data_dictionary)
|
||||
|
||||
# optional additional data cleaning/analysis
|
||||
self.data_cleaning_train(dk)
|
||||
# # optional additional data cleaning/analysis
|
||||
# self.data_cleaning_train(dk)
|
||||
|
||||
logger.info(
|
||||
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
|
||||
)
|
||||
logger.info(f"Training model on {len(data_dictionary['train_features'])} data points")
|
||||
# logger.info(
|
||||
# f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
|
||||
# )
|
||||
# logger.info(f"Training model on {len(data_dictionary['train_features'])} data points")
|
||||
|
||||
model = self.fit(data_dictionary, dk)
|
||||
end_time = time()
|
||||
# model = self.fit(data_dictionary, dk)
|
||||
# end_time = time()
|
||||
|
||||
logger.info(f"-------------------- Done training {pair} "
|
||||
f"({end_time - start_time:.2f} secs) --------------------")
|
||||
# logger.info(f"-------------------- Done training {pair} "
|
||||
# f"({end_time - start_time:.2f} secs) --------------------")
|
||||
|
||||
return model
|
||||
# return model
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
|
||||
@@ -49,21 +49,34 @@ class BaseRegressionModel(IFreqaiModel):
|
||||
logger.info(f"-------------------- Training on data from {start_date} to "
|
||||
f"{end_date} --------------------")
|
||||
# split data into train/test data.
|
||||
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
|
||||
d = dk.make_train_test_datasets(features_filtered, labels_filtered)
|
||||
if not self.freqai_info.get("fit_live_predictions_candles", 0) or not self.live:
|
||||
dk.fit_labels()
|
||||
# normalize all data based on train_dataset only
|
||||
data_dictionary = dk.normalize_data(data_dictionary)
|
||||
|
||||
# optional additional data cleaning/analysis
|
||||
self.data_cleaning_train(dk)
|
||||
self.define_data_pipeline(dk)
|
||||
self.define_label_pipeline(dk)
|
||||
|
||||
d["train_labels"], _, _ = dk.label_pipeline.fit_transform(d["train_labels"])
|
||||
d["test_labels"], _, _ = dk.label_pipeline.transform(d["test_labels"])
|
||||
|
||||
(d["train_features"],
|
||||
d["train_labels"],
|
||||
d["train_weights"]) = dk.pipeline.fit_transform(d["train_features"],
|
||||
d["train_labels"],
|
||||
d["train_weights"])
|
||||
|
||||
(d["test_features"],
|
||||
d["test_labels"],
|
||||
d["test_weights"]) = dk.pipeline.transform(d["test_features"],
|
||||
d["test_labels"],
|
||||
d["test_weights"])
|
||||
|
||||
logger.info(
|
||||
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
|
||||
)
|
||||
logger.info(f"Training model on {len(data_dictionary['train_features'])} data points")
|
||||
logger.info(f"Training model on {len(d['train_features'])} data points")
|
||||
|
||||
model = self.fit(data_dictionary, dk)
|
||||
model = self.fit(d, dk)
|
||||
|
||||
end_time = time()
|
||||
|
||||
@@ -88,11 +101,11 @@ class BaseRegressionModel(IFreqaiModel):
|
||||
filtered_df, _ = dk.filter_features(
|
||||
unfiltered_df, dk.training_features_list, training_filter=False
|
||||
)
|
||||
filtered_df = dk.normalize_data_from_metadata(filtered_df)
|
||||
# filtered_df = dk.normalize_data_from_metadata(filtered_df)
|
||||
dk.data_dictionary["prediction_features"] = filtered_df
|
||||
|
||||
# optional additional data cleaning/analysis
|
||||
self.data_cleaning_predict(dk)
|
||||
dk.data_dictionary["prediction_features"], outliers, _ = dk.pipeline.transform(
|
||||
dk.data_dictionary["prediction_features"], outlier_check=True)
|
||||
|
||||
predictions = self.model.predict(dk.data_dictionary["prediction_features"])
|
||||
if self.CONV_WIDTH == 1:
|
||||
@@ -100,6 +113,8 @@ class BaseRegressionModel(IFreqaiModel):
|
||||
|
||||
pred_df = DataFrame(predictions, columns=dk.label_list)
|
||||
|
||||
pred_df = dk.denormalize_labels_from_metadata(pred_df)
|
||||
pred_df, _, _ = dk.label_pipeline.inverse_transform(pred_df)
|
||||
dk.DI_values = dk.label_pipeline.get_step("di").di_values
|
||||
dk.do_predict = outliers.to_numpy()
|
||||
|
||||
return (pred_df, dk.do_predict)
|
||||
|
||||
@@ -1,70 +0,0 @@
|
||||
import logging
|
||||
from time import time
|
||||
from typing import Any
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.freqai_interface import IFreqaiModel
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class BaseTensorFlowModel(IFreqaiModel):
|
||||
"""
|
||||
Base class for TensorFlow type models.
|
||||
User *must* inherit from this class and set fit() and predict().
|
||||
"""
|
||||
|
||||
def train(
|
||||
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
|
||||
) -> Any:
|
||||
"""
|
||||
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
|
||||
for storing, saving, loading, and analyzing the data.
|
||||
:param unfiltered_df: Full dataframe for the current training period
|
||||
:param metadata: pair metadata from strategy.
|
||||
:return:
|
||||
:model: Trained model which can be used to inference (self.predict)
|
||||
"""
|
||||
|
||||
logger.info(f"-------------------- Starting training {pair} --------------------")
|
||||
|
||||
start_time = time()
|
||||
|
||||
# filter the features requested by user in the configuration file and elegantly handle NaNs
|
||||
features_filtered, labels_filtered = dk.filter_features(
|
||||
unfiltered_df,
|
||||
dk.training_features_list,
|
||||
dk.label_list,
|
||||
training_filter=True,
|
||||
)
|
||||
|
||||
start_date = unfiltered_df["date"].iloc[0].strftime("%Y-%m-%d")
|
||||
end_date = unfiltered_df["date"].iloc[-1].strftime("%Y-%m-%d")
|
||||
logger.info(f"-------------------- Training on data from {start_date} to "
|
||||
f"{end_date} --------------------")
|
||||
# split data into train/test data.
|
||||
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
|
||||
if not self.freqai_info.get("fit_live_predictions_candles", 0) or not self.live:
|
||||
dk.fit_labels()
|
||||
# normalize all data based on train_dataset only
|
||||
data_dictionary = dk.normalize_data(data_dictionary)
|
||||
|
||||
# optional additional data cleaning/analysis
|
||||
self.data_cleaning_train(dk)
|
||||
|
||||
logger.info(
|
||||
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
|
||||
)
|
||||
logger.info(f"Training model on {len(data_dictionary['train_features'])} data points")
|
||||
|
||||
model = self.fit(data_dictionary, dk)
|
||||
|
||||
end_time = time()
|
||||
|
||||
logger.info(f"-------------------- Done training {pair} "
|
||||
f"({end_time - start_time:.2f} secs) --------------------")
|
||||
|
||||
return model
|
||||
Reference in New Issue
Block a user