diff --git a/freqtrade/freqai/base_models/FreqaiMultiOutputRegressor.py b/freqtrade/freqai/base_models/FreqaiMultiOutputRegressor.py index f2d7ff370..15c8db256 100644 --- a/freqtrade/freqai/base_models/FreqaiMultiOutputRegressor.py +++ b/freqtrade/freqai/base_models/FreqaiMultiOutputRegressor.py @@ -6,26 +6,21 @@ from sklearn.utils.validation import has_fit_parameter, validate_data class FreqaiMultiOutputRegressor(MultiOutputRegressor): def fit(self, X, y, sample_weight=None, fit_params=None): """Fit the model to data, separately for each output variable. - Parameters - ---------- - X : {array-like, sparse matrix} of shape (n_samples, n_features) + :param X: {array-like, sparse matrix} of shape (n_samples, n_features) The input data. - y : {array-like, sparse matrix} of shape (n_samples, n_outputs) + :param y: {array-like, sparse matrix} of shape (n_samples, n_outputs) Multi-output targets. An indicator matrix turns on multilabel estimation. - sample_weight : array-like of shape (n_samples,), default=None + :param sample_weight: array-like of shape (n_samples,), default=None Sample weights. If `None`, then samples are equally weighted. Only supported if the underlying regressor supports sample weights. - fit_params : A list of dicts for the fit_params + + :param fit_params: A list of dicts for the fit_params Parameters passed to the ``estimator.fit`` method of each step. Each dict may contain same or different values (e.g. different eval_sets or init_models) - .. versionadded:: 0.23 - Returns - ------- - self : object - Returns a fitted instance. + """ if not hasattr(self.estimator, "fit"):