Merge pull request #10553 from freqtrade/dependabot/pip/develop/ruff-0.6.1

chore(deps-dev): bump ruff from 0.5.7 to 0.6.1
This commit is contained in:
Matthias
2024-08-19 20:37:12 +02:00
committed by GitHub
6 changed files with 135 additions and 103 deletions

View File

@@ -13,19 +13,22 @@ Please follow the [documentation](https://www.freqtrade.io/en/stable/data-downlo
import os
from pathlib import Path
# Change directory
# Modify this cell to insure that the output shows the correct path.
# Define all paths relative to the project root shown in the cell output
project_root = "somedir/freqtrade"
i=0
i = 0
try:
os.chdir(project_root)
assert Path('LICENSE').is_file()
except:
while i<4 and (not Path('LICENSE').is_file()):
os.chdir(Path(Path.cwd(), '../'))
i+=1
project_root = Path.cwd()
if not Path("LICENSE").is_file():
i = 0
while i < 4 and (not Path("LICENSE").is_file()):
os.chdir(Path(Path.cwd(), "../"))
i += 1
project_root = Path.cwd()
except FileNotFoundError:
print("Please define the project root relative to the current directory")
print(Path.cwd())
```
@@ -35,6 +38,7 @@ print(Path.cwd())
```python
from freqtrade.configuration import Configuration
# Customize these according to your needs.
# Initialize empty configuration object
@@ -58,12 +62,14 @@ pair = "BTC/USDT"
from freqtrade.data.history import load_pair_history
from freqtrade.enums import CandleType
candles = load_pair_history(datadir=data_location,
timeframe=config["timeframe"],
pair=pair,
data_format = "json", # Make sure to update this to your data
candle_type=CandleType.SPOT,
)
candles = load_pair_history(
datadir=data_location,
timeframe=config["timeframe"],
pair=pair,
data_format="json", # Make sure to update this to your data
candle_type=CandleType.SPOT,
)
# Confirm success
print(f"Loaded {len(candles)} rows of data for {pair} from {data_location}")
@@ -76,14 +82,16 @@ candles.head()
```python
# Load strategy using values set above
from freqtrade.resolvers import StrategyResolver
from freqtrade.data.dataprovider import DataProvider
from freqtrade.resolvers import StrategyResolver
strategy = StrategyResolver.load_strategy(config)
strategy.dp = DataProvider(config, None, None)
strategy.ft_bot_start()
# Generate buy/sell signals using strategy
df = strategy.analyze_ticker(candles, {'pair': pair})
df = strategy.analyze_ticker(candles, {"pair": pair})
df.tail()
```
@@ -102,7 +110,7 @@ df.tail()
```python
# Report results
print(f"Generated {df['enter_long'].sum()} entry signals")
data = df.set_index('date', drop=False)
data = df.set_index("date", drop=False)
data.tail()
```
@@ -119,10 +127,13 @@ Analyze a trades dataframe (also used below for plotting)
```python
from freqtrade.data.btanalysis import load_backtest_data, load_backtest_stats
# if backtest_dir points to a directory, it'll automatically load the last backtest file.
backtest_dir = config["user_data_dir"] / "backtest_results"
# backtest_dir can also point to a specific file
# backtest_dir = config["user_data_dir"] / "backtest_results/backtest-result-2020-07-01_20-04-22.json"
# backtest_dir can also point to a specific file
# backtest_dir = (
# config["user_data_dir"] / "backtest_results/backtest-result-2020-07-01_20-04-22.json"
# )
```
@@ -131,24 +142,24 @@ backtest_dir = config["user_data_dir"] / "backtest_results"
# This contains all information used to generate the backtest result.
stats = load_backtest_stats(backtest_dir)
strategy = 'SampleStrategy'
# All statistics are available per strategy, so if `--strategy-list` was used during backtest, this will be reflected here as well.
strategy = "SampleStrategy"
# All statistics are available per strategy, so if `--strategy-list` was used during backtest,
# this will be reflected here as well.
# Example usages:
print(stats['strategy'][strategy]['results_per_pair'])
print(stats["strategy"][strategy]["results_per_pair"])
# Get pairlist used for this backtest
print(stats['strategy'][strategy]['pairlist'])
print(stats["strategy"][strategy]["pairlist"])
# Get market change (average change of all pairs from start to end of the backtest period)
print(stats['strategy'][strategy]['market_change'])
print(stats["strategy"][strategy]["market_change"])
# Maximum drawdown ()
print(stats['strategy'][strategy]['max_drawdown'])
print(stats["strategy"][strategy]["max_drawdown"])
# Maximum drawdown start and end
print(stats['strategy'][strategy]['drawdown_start'])
print(stats['strategy'][strategy]['drawdown_end'])
print(stats["strategy"][strategy]["drawdown_start"])
print(stats["strategy"][strategy]["drawdown_end"])
# Get strategy comparison (only relevant if multiple strategies were compared)
print(stats['strategy_comparison'])
print(stats["strategy_comparison"])
```
@@ -166,24 +177,25 @@ trades.groupby("pair")["exit_reason"].value_counts()
```python
# Plotting equity line (starting with 0 on day 1 and adding daily profit for each backtested day)
import pandas as pd
import plotly.express as px
from freqtrade.configuration import Configuration
from freqtrade.data.btanalysis import load_backtest_stats
import plotly.express as px
import pandas as pd
# strategy = 'SampleStrategy'
# config = Configuration.from_files(["user_data/config.json"])
# backtest_dir = config["user_data_dir"] / "backtest_results"
stats = load_backtest_stats(backtest_dir)
strategy_stats = stats['strategy'][strategy]
strategy_stats = stats["strategy"][strategy]
df = pd.DataFrame(columns=['dates','equity'], data=strategy_stats['daily_profit'])
df['equity_daily'] = df['equity'].cumsum()
df = pd.DataFrame(columns=["dates", "equity"], data=strategy_stats["daily_profit"])
df["equity_daily"] = df["equity"].cumsum()
fig = px.line(df, x="dates", y="equity_daily")
fig.show()
```
### Load live trading results into a pandas dataframe
@@ -194,6 +206,7 @@ In case you did already some trading and want to analyze your performance
```python
from freqtrade.data.btanalysis import load_trades_from_db
# Fetch trades from database
trades = load_trades_from_db("sqlite:///tradesv3.sqlite")
@@ -210,8 +223,9 @@ This can be useful to find the best `max_open_trades` parameter, when used with
```python
from freqtrade.data.btanalysis import analyze_trade_parallelism
# Analyze the above
parallel_trades = analyze_trade_parallelism(trades, '5m')
parallel_trades = analyze_trade_parallelism(trades, "5m")
parallel_trades.plot()
```
@@ -222,23 +236,23 @@ Freqtrade offers interactive plotting capabilities based on plotly.
```python
from freqtrade.plot.plotting import generate_candlestick_graph
from freqtrade.plot.plotting import generate_candlestick_graph
# Limit graph period to keep plotly quick and reactive
# Filter trades to one pair
trades_red = trades.loc[trades['pair'] == pair]
trades_red = trades.loc[trades["pair"] == pair]
data_red = data['2019-06-01':'2019-06-10']
data_red = data["2019-06-01":"2019-06-10"]
# Generate candlestick graph
graph = generate_candlestick_graph(pair=pair,
data=data_red,
trades=trades_red,
indicators1=['sma20', 'ema50', 'ema55'],
indicators2=['rsi', 'macd', 'macdsignal', 'macdhist']
)
graph = generate_candlestick_graph(
pair=pair,
data=data_red,
trades=trades_red,
indicators1=["sma20", "ema50", "ema55"],
indicators2=["rsi", "macd", "macdsignal", "macdhist"],
)
```
@@ -248,7 +262,6 @@ graph = generate_candlestick_graph(pair=pair,
# Render graph in a separate window
graph.show(renderer="browser")
```
## Plot average profit per trade as distribution graph
@@ -257,12 +270,12 @@ graph.show(renderer="browser")
```python
import plotly.figure_factory as ff
hist_data = [trades.profit_ratio]
group_labels = ['profit_ratio'] # name of the dataset
group_labels = ["profit_ratio"] # name of the dataset
fig = ff.create_distplot(hist_data, group_labels, bin_size=0.01)
fig.show()
```
Feel free to submit an issue or Pull Request enhancing this document if you would like to share ideas on how to best analyze the data.