fix: ensure that a user setting up their own pipeline wont have conflicts with DI_values

This commit is contained in:
robcaulk
2023-06-17 13:21:31 +02:00
parent 72101f059d
commit 11ff454b3b
3 changed files with 3 additions and 7 deletions

View File

@@ -52,7 +52,7 @@ class BasePyTorchRegressor(BasePyTorchModel):
pred_df = DataFrame(y.detach().tolist(), columns=[dk.label_list[0]])
pred_df, _, _ = dk.label_pipeline.inverse_transform(pred_df)
if self.freqai_info.get("DI_threshold", 0) > 0:
if dk.feature_pipeline["di"]:
dk.DI_values = dk.feature_pipeline["di"].di_values
else:
dk.DI_values = np.zeros(len(outliers.index))

View File

@@ -111,7 +111,7 @@ class BaseRegressionModel(IFreqaiModel):
pred_df = DataFrame(predictions, columns=dk.label_list)
pred_df, _, _ = dk.label_pipeline.inverse_transform(pred_df)
if self.freqai_info.get("DI_threshold", 0) > 0:
if dk.feature_pipeline["di"]:
dk.DI_values = dk.feature_pipeline["di"].di_values
else:
dk.DI_values = np.zeros(len(outliers.index))