diff --git a/freqtrade/freqai/data_kitchen.py b/freqtrade/freqai/data_kitchen.py index 790b3c078..1af01cb6b 100644 --- a/freqtrade/freqai/data_kitchen.py +++ b/freqtrade/freqai/data_kitchen.py @@ -209,14 +209,13 @@ class FreqaiDataKitchen: filtered_df = unfiltered_df.filter(training_feature_list, axis=1) filtered_df = filtered_df.replace([np.inf, -np.inf], np.nan) - const_cols = list((filtered_df.nunique() == 1).loc[lambda x: x].index) - if const_cols: - filtered_df = filtered_df.filter(filtered_df.columns.difference(const_cols)) - logger.warning(f"Removed features {const_cols} with constant values.") - drop_index = pd.isnull(filtered_df).any(1) # get the rows that have NaNs, drop_index = drop_index.replace(True, 1).replace(False, 0) # pep8 requirement. if (training_filter): + const_cols = list((filtered_df.nunique() == 1).loc[lambda x: x].index) + if const_cols: + filtered_df = filtered_df.filter(filtered_df.columns.difference(const_cols)) + logger.warning(f"Removed features {const_cols} with constant values.") # we don't care about total row number (total no. datapoints) in training, we only care # about removing any row with NaNs # if labels has multiple columns (user wants to train multiple modelEs), we detect here